CHEM 150: Ch. 10 Ideal Gas Law

1. How many moles of gas (air) are in the lungs of an adult with a lung capacity of 3.9 L ? Assume that the lungs are at 1.00 atm pressure and at a body temperature of $40^{\circ} \mathrm{C}$. (Hint: V, P , and T are given. Use the equation $\mathrm{PV}=\mathrm{nRT}$ where $\mathrm{R}=0.082058 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}$)
2. Calculate the volume occupied by 0.921 moles of nitrogen gas $\left(\mathrm{N}_{2}\right)$ at a pressure of 1.38 atm and a temperature of 316 K .
3. A sample of gas has a mass of 0.312 g . Its volume is 0.255 L at a temperature of $55^{\circ} \mathrm{C}$ and a pressure of $888 \mathrm{mmHg}(1 \mathrm{~atm}=760 \mathrm{mmHg})$. Find its molar mass $\frac{\operatorname{Mass}(m)}{\operatorname{Moles}(n)}$ (Hint: use $\mathrm{PV}=\mathrm{nRT}$)
4. A piece of dry ice (solid carbon dioxide) with a mass of 30.0 g sublimes (solid to gas) into a large balloon. Assuming that all of the carbon dioxide ends up in the balloon, what is the volume of the balloon at a temperature of 22 oC and a pressure of 742 mmHg ?
(Hint: $1 \mathrm{~atm}=760 \mathrm{mmHg}$)
5. What is the volume occupied by 0.212 mol of helium gas at a pressure of 0.95 atm and a temperature of 325 K ?
6. A cylinder contains 32.4 L of oxygen gas at a pressure of 2.3 atm and a temperature of 298 K. How much gas (in moles) is in the cylinder?
7. A sample of gas has a mass of 0.501 g . Its volume is 0.425 L at a temperature of $110^{\circ} \mathrm{C}$ and a pressure of 1120 mmHg . Find its molar mass.

STEM Success Center

Solutions

1. How many moles of gas (air) are in the lungs of an adult with a lung capacity of 3.9 L ? Assume that the lungs are at 1.00 atm pressure and at a body temperature of $40^{\circ} \mathrm{C}$.
(Hint: V, P , and T are given. Use the equation $\mathrm{PV}=\mathrm{nRT}$ where $\mathrm{R}=0.082058 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}$)
$\mathrm{K}=40^{\circ} \mathrm{C}+273.15=313.15 \mathrm{~K}$
$\mathrm{n}=\frac{P V}{R T}=\frac{(1.00 \mathrm{~atm})(3.9 \mathrm{~L})}{\left(0.082058 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(313.15 \mathrm{~K})}=0.15 \mathrm{~mol}$
2. Calculate the volume occupied by 0.921 moles of nitrogen gas $\left(\mathrm{N}_{2}\right)$ at a pressure of 1.38 atm and a temperature of 316 K .
$\mathrm{V}=\frac{n R T}{P}=\frac{(0.921 \mathrm{~mol})\left(0.082058 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(316 \mathrm{~K})}{(1.38 \mathrm{~atm})}=17.3 \mathrm{~L}$
3. A sample of gas has a mass of 0.312 g . Its volume is 0.255 L at a temperature of $55^{\circ} \mathrm{C}$ and a pressure of 888 mmHg . Find its molar mass $\frac{\text { Mass }(m)}{\text { Moles (} n \text {) }}$
$\mathrm{K}=55^{\circ} \mathrm{C}+273.15=328.15 \mathrm{~K}$
$\mathrm{P}=888 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=1.1684 \mathrm{~atm}$
$\mathrm{n}=\frac{P V}{R T}=\frac{(1.1684 \mathrm{~atm})(0.255 \mathrm{~L})}{\left(0.082058 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(328.15 \mathrm{~K})}=0.01106 \mathrm{~mol}$
molar mass $=\frac{\text { Mass }(\mathrm{m})}{\text { Moles }(n)}=\frac{0.312 \mathrm{~g}}{0.01106 \mathrm{~mol}}=28.2 \mathrm{~g} / \mathrm{mol}$ is the molar mass of this gas.
4. A piece of dry ice (solid carbon dioxide) with a mass of 30.0 g sublimes (solid to gas) into a large balloon. Assuming that all of the carbon dioxide ends up in the balloon, what is the volume of the balloon at a temperature of $22^{\circ} \mathrm{C}$ and a pressure of 745 mmHg ?
$30.0 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO2}}{44.01 \mathrm{~g} \mathrm{CO2}}=0.68166 \mathrm{~mol} \mathrm{CO}_{2} ; \mathrm{K}=22{ }^{\circ} \mathrm{C}+273.15=295.15 \mathrm{~K}$
$745 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=0.980 \mathrm{~atm}$
$\mathrm{PV}=\mathrm{nRT} \rightarrow V=\frac{n R T}{P}=\frac{(0.68166 \mathrm{~mol} \mathrm{CO} 2)\left(0.082058 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(295.15 \mathrm{~K})}{(0.980 \mathrm{~atm})}=16.8 \mathrm{~L}$
5. What is the volume occupied by 0.212 mol of helium gas at a pressure of 0.95 atm and a temperature of 325 K ?
$\mathrm{PV}=\mathrm{nRT} \rightarrow V=\frac{n R T}{P}=\frac{(0.212 \mathrm{~mol})\left(0.082058 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(325 \mathrm{~K})}{(0.95 \mathrm{~atm})}=6.0 \mathrm{~L}$
6. A cylinder contains 32.4 L of oxygen gas at a pressure of 2.3 atm and a temperature of 298 K. How much gas (in moles) is in the cylinder?
$\mathrm{PV}=\mathrm{nRT} \rightarrow n=\frac{P V}{R T}=\frac{(2.3 \mathrm{~atm})(32.4 \mathrm{~L})}{\left(0.082058 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(298 \mathrm{~K})}=3.0 \mathrm{~mol}$
7. A sample of gas has a mass of 0.501 g . Its volume is 0.425 L at a temperature of $110^{\circ} \mathrm{C}$ and a pressure of 1120 mmHg . Find its molar mass.
$\mathrm{K}=110^{\circ} \mathrm{C}+273.15=383 \mathrm{~K}$
$\mathrm{P}=1120 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=1.47 \mathrm{~atm}$
$\mathrm{n}=\frac{P V}{R T}=\frac{(1.47 \mathrm{~atm})(0.425 \mathrm{~L})}{\left(0.082058 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(383 \mathrm{~K})}=0.0198786 \mathrm{~mol}$
molar mass $=\frac{\text { Mass }(m)}{\text { Moles }(n)}=\frac{0.501 \mathrm{~g}}{0.0198786 \mathrm{~mol}}=25.2 \mathrm{~g} / \mathrm{mol}$ is the molar mass of this gas.
